

Messverfahren zur Bestimmung von Kohlenwasserstoffgemischen in der Luft (RCP-Methode)

1 Grundlagen des Messverfahrens

Mit diesem Verfahren kann die Konzentration gasförmiger Kohlenwasserstoffgemische in der Luft am Arbeitsplatz bestimmt werden. Das hier beschriebene Verfahren ist für Messungen entsprechend der Technischen Regel für Gefahrstoffe (TRGS) 402 [1] geeignet. Die Nachweisgrenze der Methode liegt für Einzelstoffe absolut bei 0,4 ng und relativ bei 0,1 mg/m³ (40 l Probeluftvolumen), die Bestimmungsgrenze für Gemische bei absolut 40 ng (relativ 10 mg/m³). Das Messverfahren ist zur Kontrolle von Arbeitsplatzgrenzwerten geeignet.

Kohlenwasserstoffgemische werden für folgende Zwecke genutzt und können somit in der Luft in den jeweiligen Einsatzbereichen auftreten:

Naphtha

Naphtha, auch Rohbenzin genannt, ist ein unbehandeltes Erdöldestillat aus der Raffination von Erdöl oder Erdgas und ein wichtiger Rohstoff für die Petrochemie. Naphtha ist kein chemisch einheitlicher Stoff, sondern ein Erdöldestillat, das in etwa den Siedebereich von Benzin aufweist. Man unterscheidet entsprechend der mittleren Molekülmasse zwischen leichtem und schwerem Naphtha.

Leichtbenzin

Leichtbenzin, namentlich Ligroin, wurde bereits seit 1850 zur chemischen Reinigung verwendet und deshalb auch als Waschbenzin oder Fleck(en)benzin bezeichnet. Verkauft wurde es zu diesem Zweck in kleinen Mengen in Drogerien, Apotheken oder Kaufläden.

Testbenzin

Testbenzin wird meist als preisgünstiger Ersatz (Terpentinersatz) für das Naturprodukt Terpentinöl verwendet. Es ist insbesondere in sogenannten lösemittelhaltigen Produkten wie Klebstoffen und Anstrichen – d. h. Farben, Lacken und Holzschutzmitteln – enthalten. Außerdem ist es der Hauptbestandteil von Universalverdünnung, auch Terpentin(öl)ersatz oder Kunstharzverdünnung genannt.

Petrolether

Bei Petrolether handelt es sich um ein farbloses Gemisch verschiedener gesättigter Kohlenwasserstoffe (üblicherweise Alkane wie Pentan/Hexan). Petrolether sind aromatenarme, niedrig siedende (zwischen ca. 30 und 60 °C), leichtentzündliche Kohlenwasserstofffraktionen. Sie werden verwendet bei Verfahren, bei denen eine schnelle, leichte und daher auch energiesparende Verdampfung des Lösemittels gewünscht ist. Petrolether findet in der Organischen Chemie als Lösemittel und in der Chromatographie als Mobile Phase Verwendung.

Wundbenzin

Als Wundbenzin (Benzinum medicinale) wird ein besonders reiner Petrolether bezeichnet. Wegen seiner fettlösenden Eigenschaften können damit Ölreste, aber auch Rückstände von Heftpflastern entfernt werden. Wundbenzin hat im Gegensatz zu Alkohol keine antibakterielle Wirkung.

Solvent Naphtha

Solvent Naphtha, auch Lösungsbenzol genannt, ist eine Sammelbezeichnung für eine Fraktion aromatischer Kohlenwasserstoffe, die bei der Destillation von Steinkohlenteer bei einer Temperatur zwischen ca. 150 und 210 °C erhalten wird. Es besteht überwiegend aus C₇- bis C₁₀- Aromaten wie Toluol, Xylol, Mesitylen und Inden mit Beimengungen von Naphthenen und anderen paraffinischen Kohlenwasserstoffen. Je nach Siede- und Flammpunkt wird zwischen tief- und mittelsiedendem Solvent Naphtha unterschieden. Solvent Naphta ist ein kostengünstiges, sehr gutes Lösungsmittel und kommt als solches zum Einsatz für Natur- und Kunstharze (darunter Alkydharze und Epoxidharzester), für Druckfarben in der Textil- und Papierindustrie, für die Verdünnung von Farben, Firnissen und Lacken (auch Lackrohstoffen wie Lackhärtern) sowie zur Herstellung von Herbiziden und Insektiziden. Obwohl der Name eine chemische Verwandtschaft mit Naphtha suggeriert, ist diese kaum gegeben. Bei Naphtha handelt es sich um eine überwiegend paraffinische Fraktion der Rohöldestillation, während Solvent Naphtha ursprünglich aus Steinkohlenteer gewonnen wurde und überwiegend aromatische Bestandteile enthält.

Die stoffspezifischen Kenndaten sind in Tabelle 1 zusammengestellt.

Tabelle 1: Stoffspezifische Kenndaten

Kenndaten	C₅ - C ₈ -	C ₉ - C ₁₅ -	C ₇ - C ₈ -	C ₉ - C ₁₅ -	
	Aliphaten	Aliphaten	Aromaten	Aromaten	
Synonyme	z. B. Petrolether, Siedegrenzenbenzin (40 bis 60 °C), techn. Hexan, Iparsol 60, Spezialbenzin 60/90EA, Heptan B EA, Spezialbenzin 80/110 EA, (Spezialbenzin 100/140EA)	z. B. (Spezialbenzin 100/140EA), Hydrosol P140EA, (Hydrosol P150), Hydrosol P150 EA, (Hydrosol P180), Hydrosol P180 EA, Petroleum, Hydrosol P200 EA	Toluol, Ethylbenzol, o-Xylol, m-Xylol, p-Xylol	z. B. 1,2-Diethylbenzol, Propylbenzol, Butylbenzol, (Hydrosol P150), (Hydrosol P180), Solvesso, Hydrosol A170, Hydrosol A200, Hydrosol A200 ND	
Siedebereich	ca. 30 °C	ca. 140 °C	ca. 110 °C	ca. 140 °C	
	bis ca. 140 °C	bis 250 °C	bis ca. 140 °C	bis ca. 200 °C	
CAS-Nr.	64745-49-0	64745-48-9 64745-47-8	108-88-3 100-41-4 95-47-6 108-38-3 106-42-3	64742-95-6 64742-94-5	
Grenzwert (Art) ¹⁾	1500 mg/m³	600 mg/m³	200 mg/m³	100 mg/m³	
	(AGW)	(AGW)	(AGW)	(AGW)	
Spitzenbegrenzung	2 (II)	2 (II)	2 (II)	2 (II)	

¹⁾ Die in den Tabellen angegebenen AGW haben den Stand 09/08. Treten Kohlenwasserstoffe (KW) aus unterschiedlichen Gruppen auf, muss ein Gemisch-AGW berechnet werden

2 Messprinzip

Die mit Schwefelkohlenstoff von der Aktivkohle desorbierten Kohlenwasserstoffgemische werden gaschromatographisch analysiert (FID-Detektion).

3 Geräte

3.1 Geräte und Hilfsmittel für die Probenahme

Nähere Informationen zu den bei der Probenahme einzusetzenden Geräten enthält die IFA-Arbeitsmappe "Messung von Gefahrstoffen" (Sachgruppe 6, Kennzahlen 3005 bis 3050 [2]).

- Pumpe
- Röhrchenhalter
- Volumenstrom-Messgerät
- · Aktivkohleröhrchen, Dräger Typ B

3.2 Geräte für Probenvorbereitung und Bestimmung

Die in der Liste genannten Glasgeräte werden in der Spülmaschine gereinigt und ggf. im Trockenschrank getrocknet.

- Gaschromatograph
- Schraubgläschen mit Deckel und Dichtplättchen, Nennvolumen 15 ml
- Messkolben, Nennvolumen 2, 10 und 50 ml
- Dispensette: 1 bis 10 ml in 0,2-ml-Schritten einstellbar
- Mikroliterspritzen: 10, 100 und 250 μl
- Einmalfilter
- Autosampler Gläschen

4 Chemikalien

Das Datum des erstmaligen Öffnens von Chemikalienbehältnissen ist auf dem Etikett zu vermerken.

- n-Hexan p.a.
- Cyclohexan p.a.
- n-Dodekan p.a.
- Toluol p.a.
- Ethylbenzol p.a.
- o-Xylol p.a.
- m-Xylol p.a.
- 1,2-Diethylbenzol p.a.
- n-Butylbenzol p.a.
- Naphthalin
- Schwefelkohlenstoff zur Analyse
- Trägergas Helium 5,0
- Brenngase: Wasserstoff 5,0 und synthetische Luft, Kohlenwasserstoff-frei

5 Probenahmeverfahren und -bedingungen

Für die Probenahme werden geeignete Pumpen eingesetzt. Weiterhin ist darauf zu achten, dass eine repräsentative Probenahme gewährleistet ist (s. TRGS 402). Grundsätzliche Informationen zur Probenahme enthält die IFA-Arbeitsmappe "Messung von Gefahrstoffen" (Sachgruppe 6), auf die hier ausdrücklich hingewiesen wird.

Tabelle 2 enthält Vorgaben, die für die Probenahme von Luftproben zur anschließenden Kohlenwasserstoffbestimmung im Rahmen des Messsystems Gefährdungsermittlung der Unfallversicherungsträger (MGU) bindend sind.

Tabelle 2: Vorgaben für die Probenahme

Vorgaben für die Probenahme				
Probenahmesystem Pumpe mit Röhrchenhalter				
Probenträger Aktivkohle, Dräger Typ B				
Probenträgercodierung	511			
Probenahmedauer	2 h			
Luftvolumenstrom	20 l/h			
Luftfeuchte	≤ 70 % ¹⁾			

¹⁾ Bei Luftfeuchten > 70 % sind zwei miteinander verbundene Röhrchen hintereinander zu verwenden.

6 Lagerung

Nach der Probenahme sind die beaufschlagten Röhrchen dem IFA möglichst schnell zuzuleiten. Die maximale Lagerzeit bei Raumtemperatur beträgt 28 Tage.

7 Kalibrierung

Da Kohlenwasserstoffgemische sehr komplex sind, werden zur Bestimmung der Gemische einzelne Aliphaten und Aromaten ausgewählt. Die unbekannten Komponenten werden anhand eines gemittelten Responsefaktors der kalibrierten Einzelstoffe bestimmt. Folgende Lösungen werden für jede Kalibrierung neu angesetzt:

Stammlösung 1

Je 100 μ l n-Hexan, Cyclohexan, n-Dodecan, Toluol, Ethylbenzol, o- und m-Xylol, 1,2-Diethylbenzol und n-Butylbenzol werden mit einer 250 μ l-Spritze in einen 2-ml-Messkolben dosiert, in dem ca. 0,5 ml CS $_2$ vorgelegt sind. Zudem werden z. B. 100,9 mg an Naphthalin in die Lösung eingewogen. Der Messkolben wird mit CS $_2$ bis zur Messmarke aufgefüllt und geschüttelt.

Stammlösung 2

Je 10 μ l n-Hexan, Cyclohexan, n-Dodecan, Toluol, Ethylbenzol, o- und m-Xylol, 1,2-Diethylbenzol und n-Butylbenzol werden mit einer 25 μ l-Spritze in einen 10-ml-Messkolben dosiert, in dem ca. 5 ml CS₂ vorgelegt sind. Zudem werden z. B. 10,09 mg an Naphthalin in die Lösung eingewogen. Der Messkolben wird mit CS₂ bis zur Messmarke aufgefüllt und geschüttelt (Stammlösung 2 = 200 μ l Stammlösung 1 in 10 ml).

7.1 Kalibrierlösungen für die 10-Punkt-Kalibrierung im Arbeitsbereich

Die 10-Punkt-Kalibrierung dient im Wesentlichen zum Linearitätsvergleich mit der 6-Punkt-Kalibrierung. Ausgehend von Stammlösung 1 werden die in Tabelle 3 dargestellten Kalibrierlösungen hergestellt.

Tabelle 3: Kalibrierlösungen für die 10-Punkt-Kalibrierung im Arbeitsbereich

				Angaben in mg/10 ml								
Nr.	V _{StammIsg} . [μΙ]	V _{Messkolben} [ml]	C ₆	СН	C ₁₂	Toluol	Ethyl- benzol	o-Xylol	m-Xylol	1,2-Diethyl- benzol	Butyl- benzol	Naphthalin
1	0,1*	10	0,0033	0,0039	0,0037	0,0043	0,0043	0,0044	0,0043	0,0044	0,0043	0,0050
2	40	10	1,321	1,557	1,496	1,726	1,734	1,762	1,731	1,760	1,720	2,018
3	80	10	2,641	3,113	2,992	3,452	3,469	3,524	3,462	3,520	3,440	4,036
4	120	10	3,962	4,670	4,488	5,179	5,203	5,287	5,194	5,280	5,160	6,054
5	160	10	5,282	6,226	5,984	6,905	6,938	7,049	6,925	7,040	6,880	8,072
6	200	10	6,603	7,783	7,480	8,631	8,672	8,811	8,656	8,800	8,600	10,090
7	240	10	7,924	9,340	8,976	10,357	10,406	10,573	10,387	10,560	10,320	12,108
8	280	10	9,244	10,896	10,472	12,083	12,141	12,335	12,118	12,320	12,040	14,126
9	320	10	10,565	12,453	11,968	13,810	13,875	14,098	13,850	14,080	13,760	16,144
10	360	10	11,885	14,010	13,464	15,536	15,610	15,860	15,581	15,840	16,144	18,162

^{*} Für Kalibrierlösung 1 wurden 5 µl Kalibrierlösung 6 in 10 ml dosiert.

7.2 Kalibrierlösungen für die 10-Punkt-Kalibrierung zur Ermittlung der Verfahrenskenndaten

Zur Ermittlung von Verfahrenskenndaten wurde eine äquidistante 10-Punkt-Kalibrierung über eine Zehnerpotenz, beginnend bei der Bestimmungsgrenze, hergestellt. Ausgehend von Stammlösung 2 werden die in Tabelle 4 dargestellten Kalibrierlösungen hergestellt.

Tabelle 4: Kalibrierlösungen für die 10-Punkt-Kalibrierung zur Ermittlung der Verfahrenskenndaten

	V	V		Angaben in mg/10 ml								
Nr.	V _{StammIsg} . [μΙ]	V _{Messkolben} [ml]	C ₆	СН	C ₁₂	Toluol	Ethyl- benzol	o-Xylol	m-Xylol	1,2-Diethyl- benzol	Butyl- benzol	Naphthalin
1	5	10	3,30	3,89	3,74	4,32	4,34	4,41	4,33	4,40	4,30	5,05
2	10	10	6,60	7,78	7,48	8,63	8,67	8,81	8,66	8,80	8,60	10,09
3	15	10	9,90	11,67	11,22	12,95	13,01	13,22	12,98	13,20	12,90	15,14
4	20	10	13,21	15,57	14,96	17,26	17,34	17,62	17,31	17,60	17,20	20,18
5	25	10	16,51	19,46	18,7	21,58	21,68	22,03	21,64	22,00	21,50	25,23
6	30	10	19,81	23,35	22,44	25,89	26,02	26,43	25,97	26,40	25,80	30,27
7	35	10	23,11	27,24	26,18	30,21	30,35	30,84	30,30	30,80	30,10	35,32
8	40	10	26,41	31,13	29,92	34,52	34,69	35,24	34,62	35,20	34,40	40,36
9	45	10	29,71	35,02	33,66	38,84	39,02	39,65	38,95	39,60	38,70	45,41
10	50	10	33,02	38,92	37,40	43,16	43,36	44,06	43,28	44,00	43,00	50,45

7.3 Kalibrierlösungen für die 6-Punkt-Kalibrierung

Ausgehend von Stammlösung 1 werden die in Tabelle 5 dargestellten Kalibrierlösungen hergestellt.

Tabelle 5: Kalibrierlösungen für die 6-Punkt-Kalibrierung

	V	V	Angaben in mg/10 ml									
Nr.	Nr. V _{StammIsg.} [μΙ]	V _{Messkolben} [ml]	C ₆	СН	C ₁₂	Toluol	Ethyl- benzol	o-Xylol	m-Xylol	1,2-Diethyl- Butyl- benzol benzol	Naphthalin	
1	0,1*	10	0,0033	0,0039	0,0037	0,0043	0,0043	0,0044	0,0043	0,0044	0,0043	0,0050
2	40	10	1,321	1,557	1,496	1,726	1,734	1,762	1,731	1,760	1,720	2,018
3	120	10	3,962	4,670	4,488	5,179	5,203	5,287	5,194	5,280	5,160	6,054
4	200	10	6,603	7,783	7,480	8,631	8,672	8,811	8,656	8,800	8,600	10,090
5	280	10	9,244	10,896	10,472	12,083	12,141	12,335	12,118	12,320	12,040	14,126
6	360	10	11,885	14,009	13,464	15,536	15,610	15,860	15,581	15,840	15,480	18,162

^{*} Für Kalibrierlösung 1 wurden 5 µl Kalibrierlösung 4 in 10 ml dosiert.

7. 4 Kontrolllösung (im unteren Arbeitsbereich)

Als Kontrollprobe für die Präzision innerhalb einer Analysenserie dient ein Standard kleiner Konzentration (bezogen auf den Arbeitsbereich der Kalibrierung) von

$$\beta = 0.3 - 0.4 \text{ mg/}10 \text{ ml}.$$

In einen 50-ml-Messkolben, in dem ca. 25 ml CS_2 vorgelegt sind, werden z. B. 2 mg an Naphthalin eingewogen und je 2 μ l n-Hexan, Cyclohexan, n-Dodecan, Toluol, Ethylbenzol, o-Xylol, m-Xylol, 1,2-Diethylbenzol und n-Butylbenzol dosiert, bis zur Marke mit CS_2 aufgefüllt, geschüttelt, in Autosamplergläschen gefüllt und verschlossen (siehe Tabelle 6). Die Lösung ist im Kühlschrank bei 4 °C mindestens vier Monate haltbar.

Tabelle 6: Beispiel für eine Kontrolllösung

Substanz	m(Substanz) [µg/10 ml CS₂]
n-Hexan	330,15
Cyclohexan	389,15
n-Dodecan	374,00
Toluol	431,55
Ethylbenzol	433,60
o-Xylol	440,55
m-Xylol	432,80
1,2-Diethylbenzol	440,00
n-Butylbenzol	430,00
Naphthalin	400,00

8 Probenvorbereitung

Die Röhrchen werden nach der Probenahme geöffnet und der Inhalt in ein 15-ml-Schraubgläschen überführt. Anschließend wird die Aktivkohle mit 10 ml CS₂ mittels Dispensette überschichtet und das Gläschen verschlossen. Nach einer halben Stunde ist die Desorption abgeschlossen. Danach wird das Gläschen kurz geschüttelt. Die Lösung wird durch einen Einmalfilter in ein Autosamplergläschen filtriert und analysiert.

9 Analytische Bestimmung

Mithilfe des Autosamplers wird 1 µl der Lösung in den Gaschromatographen injiziert. Die Lösung wird auf zwei Säulen gesplittet. Es wird nach der Methode des externen Standards gearbeitet. Für die Auswertung werden die Massen der Einzelkomponenten aufsummiert und der Mittelwert der Summen beider Säulen benutzt. Alle Substanzen, die keine Kohlenwasserstoffe sind, müssen aus den Summen herausgerechnet werden. Stimmen die beiden Werte nicht überein, muss anhand verschiedener Kriterien ermittelt werden, welcher Wert angegeben wird.

Bei Alkanmischungen, die überwiegend aus Kohlenwasserstoffen > C₁₀ bestehen, ergeben sich auf der polaren Säule nur ungenügende Wiederfindungen, in diesem Falle (Abweichung > 20 %) ist das Ergebnis der unpolaren Säule zu benutzen. Diese sind im Bereich von 0,4 bis 2,0 mg/Probenträger nach der im Diagramm angegebenen Formel "KW a" zu korrigieren (siehe Abbildung 1).

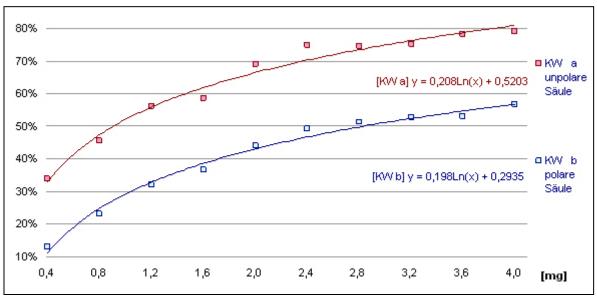


Abbildung 1: Wiederfindung aliphatischer Kohlenwasserstoffe größer C₁₀

9.1 Arbeitsbedingungen

Die analytische Bestimmung erfolgt nach den Arbeitsbedingungen in den Tabellen 7 und 8:

Tabelle 7: Arbeitsbedingungen an Gaschromatograph 1

Arbeitsbedingungen	
Trennsäule A	60 m HP-5 (Agilent) 5 % Phenylmethylsiloxan, ID = 250 μm, FD = 0,25 μm; unpolar
Trennsäule B	60 m HP-INNOWAX (Agilent) Polyethylenglycol, ID = 250 μm, FD = 0,25 μm; polar
Trägergas	Helium
Fluss (Säule A und B)	1,6 ml/min (28,05 psi); Constant Flow
Split	1:20
Injektortemperatur	250 °C
Temperaturprogramm (Ofen)	50 °C, 2 min =>10 °C/min => 180 °C, 10 min
Detektortemperatur (A und B)	250 °C
Auswertung	Methode des externen Standards

Tabelle 8: Arbeitsbedingungen an Gaschromatograph 2

Arbeitsbedingungen	
Trennsäule A	60 m RTX5 (Restek) 5 % Phenylmethylsiloxan, ID = 250 μm, FD = 0,5 μm; unpolar
Trennsäule B	60 m HP-INNOWAX (Agilent) Polyethylenglycol, ID = 250 μm, FD = 0,5 μm; polar
Trägergas	Helium
Fluss (Säule A und B)	1,2 ml/min (22,79 psi); Constant Flow
Split	1:20
Injektortemperatur	250 °C
Temperaturprogramm (Ofen)	50 °C, 11 min => 4 °C/min => 200 °C, 30 min
Detektortemperatur (A und B)	250 °C
Auswertung	Methode des externen Standards

10 Auswertung

10.1 Auswertung der Kalibrier-Rohdaten (10-Punkt-Kalibrierungen)

Die Auswertung der Kalibrier-Rohdaten dient der Ermittlung der Ausgleichsfunktion, der Bestimmung der Nachweis-, Erfassungs- und Bestimmungsgrenze und der Präzision des analytischen Grundverfahrens. Weitere Verfahrenskenndaten wurden anhand von Probenahmeversuchen an einer dynamischen Gasstrecke oder durch Aufspritzen auf die Röhrchen ermittelt.

10.2 Auswertung der Kalibrier-Rohdaten (6-Punkt-Kalibrierung)

Die Auswertung der Kalibrier-Rohdaten dient im Wesentlichen der Ermittlung der Ausgleichsfunktion, die für die Ergebnisberechnung benötigt wird. Für den Routinemessbetrieb wird ausgehend von den Kalibrier-Rohdaten mittels linearer Regressionsgleichung die Analysenfunktion der allgemeinen Form ermittelt:

$$m_{(KW)} = \frac{A_{(KW)} - a}{b}$$

mit

 $\begin{array}{ll} A_{(KW)} & \text{Fläche Kohlenwasserstoff/10 ml } CS_2 \\ m_{(KW)} & \text{Masse Kohlenwasserstoff/10 ml } CS_2 \end{array}$

a Achsenabschnitt

b Steigung

Die Berechnung dieser Analysenfunktion erfolgt durch die Software Agilent GC ChemStation automatisch.

10.3 Ergebnisberechnung

Die Massen werden mit der Analysenfunktion aus den ermittelten Flächen der Einzelkomponenten berechnet und aufsummiert. Bei der Ergebnisberechnung müssen das Probeluftvolumen und die Wiederfindungsrate berücksichtigt werden. Somit ergibt sich folgende Berechnungsgleichung:

$$\beta_{(KW)} = \sum \frac{m_{(KW)}}{V_{Luft} * WFR} mg/m^3$$

mit

β_(KW) Massenkonzentration an Kohlenwasserstoff in der Luftprobe in mg/m³

 Σ Summe

WFR Wiederfindungsrate V_{Luft} Probeluftvolumen in Liter

10.4 Ergebnisangabe

Das Ergebnis wird ohne Nachkommastelle angegeben. In Tabelle 9 sind Beispiele zur Erläuterung der Vorgehensweise aufgeführt.

Tabelle 9: Beispiele für die Ergebnisabgabe

Analysenergebnis ß _(KW) [mg/m³]	Ergebnisangabe ß _(KW) [mg/m³]
10,7	11

Bei Analysenergebnissen unterhalb der Bestimmungsgrenze des Verfahrens erfolgt die Ergebnisangabe in der Form:

 $\beta_{(KW)}$ < 10 mg/m³ (bei 40 l Probeluftvolumen)

11 Beurteilung der Methode

11.1 Nachweisgrenzen

Die Nachweisgrenzen wurden aus einer 10-Punkt-Kalibrierung über eine Zehnerpotenz mit äquidistanten Werten nach DIN 32645 [3] bestimmt.

11.2 Wiederfindung

Für 10, 50 und 200 mg/m³ wurden die Wiederfindungsraten an einer dynamischen Gasstrecke ermittelt. Dafür wurden die Röhrchen zwei Stunden mit 20 I Prüfgas/h beaufschlagt. Die Kohlenwasserstoffkonzentrationen in der Strecke wurden kontinuierlich mit einem FID überwacht. Die Versuche wurden exemplarisch mit folgenden Kohlenwasserstoffmischungen durchgeführt: 60/95EA, 100/140EA, P150, P150EA, A170 und A200 (siehe Tabelle 10). Die Konzentrationen für den zweifachen Arbeitsplatzgrenzwert wurden mit den Mischungen 60/95EA, P140EA und P200EA (Lagerversuche) auf Aktivkohleröhrchen aufgespritzt und zwei Stunden lang mit einem Volumenstrom von 20 I/h Luft durchgesaugt. Für jeden Versuch wurden sechs Röhrchen (Lagerversuche drei Röhrchen pro Woche) belegt.

Tabelle 10: Variationskoeffizienten und Wiederfindungsraten für verschiedene Kohlenwasserstoffe

KW	Variationskoeffizient [%]	Wiederfindungsrate
60/95EA	Vk1 = 1,8 % (10 mg/m³ 40 l) Vk2 = 0,3 % (50 mg/m³ 40 l) Vk3 = 0,7 % (200 mg/m³ 40 l) Vk4 = 2,0 % (2990 mg/m³ 40 l)	0,98
100/140EA	Vk1 = 3,0 % (10 mg/m³ 40 l) Vk2 = 7,0 % (50 mg/m³ 40 l) Vk3 = 1,4 % (200 mg/m³ 40 l)	0,88
P150	Vk1 = 9,3 % (10 mg/m³ 40 l) Vk2 = 5,2 % (50 mg/m³ 40 l) Vk3 = 2,5 % (200 mg/m³ 40 l)	0,91
P150EA	Vk1 = 6,2 % (10 mg/m³ 40 l) Vk2 = 2,9 % (50 mg/m³ 40 l) Vk3 = 1,2 % (200 mg/m³ 40 l)	0,91
P200EA	Vk1 = 10,93 % (10 mg/m³ 40 l) Vk2 = 3,3 % (50 mg/m³ 40 l) Vk3 = 8,0 % (200 mg/m³ 40 l)	0,96
A200	Vk1 = 2,9 % (10 mg/m³ 40 l) Vk2 = 2,9 % (50 mg/m³ 40 l) Vk3 = 1,3 % (200 mg/m³ 40 l)	0,87
A 170	Vk2 = 0.8 % (200 mg/m ³ 40 l)	0,98

11.3 Variationskoeffizient

Die Variationskoeffizienten (siehe Tabelle 10) wurden aus Probenahmeversuchen an der dynamischen Gasstrecke (für P200EA aufgespritzt) mit je sechs Röhrchen bestimmt. Die Berechnung des Variationskoeffizienten erfolgt nach:

$$Vk = \frac{S}{\bar{x}} * 100\%$$

mit

Vk Variationskoeffizient S Standardabweichung

 \bar{x} Mittelwert

11.4 Verfahrenskenndaten

Für das beschriebene Verfahren wurden die in Tabelle 11 aufgelisteten Arbeits- und Messbereiche ermittelt.

Tabelle 11: Arbeits- und Messbereiche für verschiedene Kohlenwasserstoffgemische

KW-Gemisch	Arbeitsbereich [mg/m³ bei 40 l Probeluft]	Messbereich [mg/m³ bei 40 l Probeluft]
C ₅ - C ₈ -Aliphaten	10 bis 3000	10 bis 3000
C ₉ - C ₁₅ -Aliphaten	10 bis 1200	10 bis 1200
C ₇ - C ₈ -Aromaten	10 bis 400	10 bis 400
C ₉ - C ₁₅ -Aromaten	10 bis 200	10 bis 200

Dabei ist der Arbeitsbereich der lineare Bereich des Gaschromatographen, in dem kalibriert wurde. Der Messbereich ist der Konzentrationsbereich, in dem das Verfahren gemäß DIN EN 482 [4] kontrolliert werden muss. Das Messverfahren muss in diesem Bereich richtige und präzise Ergebnisse liefern.

Der Kalibrierfunktionstyp ist für alle Kohlenwasserstoffe linear. Die Linearität wurde mithilfe eines F-Tests (Anpassungstest nach Mandel) mit den Werten aus den 10-Punkt-Kalibrierungen überprüft.

Tabelle 12 listet weitere Verfahrenskenndaten auf.

Tabelle 12: Verfahrenskenndaten für verschiedene Kohlenwasserstoffe

Kohlen- wasserstoff	Äquidistante 10-Punkt- Kalibrierung [µg/10 ml CS₂]	Nachweis- grenze, absolut [ng/µl CS₂]	Nachweis- grenze, relativ (für 40 l Probeluft) [mg/m³]	Bestim- mungs- grenze, absolut [ng/µl CS₂]	Bestim- mungs- grenze, relativ (für 40 I Probeluft) [mg/m³]	Linearität gesichert bis [mg/10ml CS ₂]	Verfahrens- variations- koeffizient [%]
C ₆	3,30 - 33,02	0,074	0,019	0,276	0,069	11,9	0,7
СН	3,89 - 38,92	0,149	0,037	0,534	0,134	14,0	0,7
C ₁₂	3,74 - 37,40	0,077	0,019	0,288	0,072	13,5	0,9
Toluol	4,32 - 43,16	0,088	0,022	0,329	0,082	15,5	0,8
Ethylbenzol	4,34 - 43,40	0,090	0,023	0,337	0,084	15,6	0,8
o-Xylol	4,41 - 44,06	0,055	0,014	0,210	0,053	15,9	0,8
m-Xylol	4,33 - 43,28	0,052	0,013	0,199	0,050	15,6	0,8
1,2-DEB	4,40 - 44,00	0,092	0,023	0,344	0,086	15,8	0,9
Butylbenzol	4,30 - 43,00	0,079	0,020	0,300	0,075	15,5	0,9
Naphthalin	5,05 - 50,45	0,107	0,027	0,401	0,100	18,2	0,9

Die Bestimmungsgrenzen wurden als kleinster Wert des Arbeitsbereiches festgelegt. Die ermittelten Bestimmungsgrenzen aus der 10-Punkt-Kalibrierung liegen unterhalb dieser Werte.

Der Verfahrensvariationskoeffizient wird aus der 10-Punkt-Kalibrierung über den Arbeitsbereich ermittelt.

11.5 Messunsicherheit der Methode

Die Messunsicherheit der Methode wurde nach DIN EN 482 [4] berechnet. Die Berechnungsformel für die erweiterte Messunsicherheit nach DIN EN 482 gilt für Gase, Dämpfe und einatembare Aerosole.

$$u_c = \sqrt{\sum_{n=1}^{1} u_n^2}$$

mit

u_c kombinierte Standardmessunsicherheit (combined standard uncertainty)

u_n Einzelkomponenten der Messunsicherheit

und $U = 2 * u_c$

wobei U für die erweiterte Messunsicherheit (expanded uncertainty) steht. Die ermittelten Werte sind in Tabelle 13 zusammengefasst.

Tabelle 13: Erweiterte Messunsicherheit

	Konzentration in mg/m³	Expanded uncertainty* [%]
60/95EA	10	13,83
	50	10,71
	200	10,79
	2990	11,59
100/140EA	10	14,64
	50	25,50
	200	18,61
P150	10	22,19
	50	19,56
	200	18,17
P150EA	10	16,98
	50	16,73
	200	21,45

	Konzentration in mg/m³	Expanded uncertainty* [%]
P200EA	10	26,39
	50	20,44
	200	27,47
A200	10	31,31
	50	25,06
	200	25,56

^{*} Die Berechnung erfolgte in Anlehnung an das im Projektreport BC/CEN/ENTR/000/2002-16 "Analytical methods for chemical agents" beschriebene Verfahren.

12 Literatur

- [1] Technische Regeln für Gefahrstoffe: Ermitteln und Beurteilen der Gefährdungen bei Tätigkeiten mit Gefahrstoffen Inhalative Exposition (TRGS 402) (01.10). Zuletzt geändert und ergänzt: GMBI. (2014) Nr. 12, S. 254-257 vom 02.04.2014
- [2] IFA-Arbeitsmappe, Messung von Gefahrstoffen. Hrsg.: Deutsche Gesetzliche Unfallversicherung, Berlin. Erich Schmidt, Berlin 2011 Losebl.-Ausg.
- [3] DIN EN 32645: Chemische Analytik Nachweis-, Erfassungs- und Bestimmungsgrenze unter Wiederholbedingungen Begriffe, Verfahren, Auswertung (11.08). Beuth, Berlin 2008
- [4] DIN EN 482: Exposition am Arbeitsplatz Allgemeine Anforderungen an die Leistungsfähigkeit von Verfahren zur Messung chemischer Arbeitsstoffe (06.12). Beuth, Berlin 2012