

Informationsblatt "Rutschhemmung von Badepantinen"

Stand 12.10.2016

Rutschhemmung von Badepantinen

Das Sachgebiet hat sich mit der Rutschhemmung von Badepantinen befasst. In umfangreichen Untersuchungen beim Institut für Arbeitsschutz (IFA) der Deutschen Gesetzlichen Unfallversicherung in Sankt Augustin wurden verschiedene Badepantinen hinsichtlich der Rutschhemmung beurteilt. Über die Ergebnisse wird berichtet.

Ausgangssituation

Badepantinen werden sowohl zum Schutz gegen Ausrutschen als auch aus hygienischen Gründen getragen. Sie kommen zum Beispiel beim betrieblichen Umkleiden und Duschen als auch an Arbeitsplätzen bei Reinigungs- und Pflegeunternehmen zum Einsatz. Darüber hinaus finden sie erhebliche Anwendung im Privatbereich.

Die erforderliche Rutschhemmung durch den Bodenbelag alleine kann oftmals nicht garantiert werden. Zudem können sich Zwischenmedien (z. B. Seifenlösung) negativ auswirken. In Nassbereichen besteht somit eine erhöhte Gefahr des Ausrutschens.

Rutschunfälle stellen grundsätzlich einen Schwerpunkt im Unfallgeschehen der gesetzlichen Unfallversicherungsträger dar [1, 2].

Ein wichtiger Bestandteil bei der tätigkeitsbezogenen Gefährdungsbeurteilung ist die Frage des Schutzes gegen Ausrutschen. Immer häufiger wurde an das Sachgebiet die Frage herangetragen, welche Badepantinen als rutschhemmend gelten. Auf Rutschhemmung geprüfte Badepantinen befinden sich aktuell noch nicht im Markt.

Für Badepantinen, die im Bergbau während des Umkleidens und beim Duschen getragen werden, gibt es spezielle Normvorgaben. Es handelt sich um die DIN 23323 [3]. Forderungen bezüglich Rutschhemmung werden jedoch in dieser nicht benannt.

Für Fußschutz gemäß Normen DIN EN ISO 20347 "Berufsschuhe" [4] ist die Forderung der Rutschhemmung eine Grundanforderung. Entsprechende Mindestreibungskoeffizienten werden benannt. Der Reibungskoeffizient für Schuhe ist nach DIN EN ISO 13287 "Schuhe -Prüfverfahren zur Bestimmung der Rutschhemmung" [5] zu bestimmen.

Prüfmuster

Die Untersuchungen wurden an einer Vielzahl verschiedener Modelle unterschiedlicher Hersteller durchgeführt. Die Badepantinen verfügen über unterschiedlich profilierte Gummi-, EVA- oder PU-Sohlen.

Die Bereitstellung der Prüfmuster erfolgte auf freiwilliger Basis durch Hersteller oder Händler unter Einbeziehung des Bundesverbandes der Schuh- und Lederindustrie e.V. oder die Muster wurden direkt aus dem Markt bezogen.

Das Sachgebiet plant, auch weiterhin derartige Prüfungen auf Wunsch von Herstellern durchzuführen und positive Ergebnisse zu veröffentlichen.

Prüfverfahren

Die Prüfung der Rutschhemmung erfolgte maschinengebunden mit dem Boden-Schuh-Tester nach DIN EN ISO 13287 [5] und personengestützt mit einem Begehungsverfahren nach E DIN 51097 [6].

Der Boden- und Schuhtester nach DIN EN ISO 13287 ist eine maschinelle Prüfeinrichtung zur Messung des Gleitreibungskoeffizienten zwischen Fußboden und Schuh. Der zu prüfende Schuh wird auf einem künstlichen Fuß oder Schuhleisten befestigt und mit definierter Kraft auf den Boden abgesenkt. Der Schuh gleitet nun mit einer Vorschubgeschwindigkeit von 0,30 m/s über den Boden. Man misst die dabei auftretende Horizontalkraft und ermittelt hieraus den Gleitreibungskoeffizienten.

Die Prüfungen wurden auf der Keramikfliese "Eurotile 2", vorwärtsgleitend auf der Ferse mittels Schuhleisten und flach aufliegend mittels künstlichem Fuß, durchgeführt Als Zwischenmedium diente eine 0,5%-ige Natriumlaurylsulfat-Lösung in entmineralisiertem Wasser. Die Bewertung der Ergebnisse erfolgte nach DIN EN ISO 20347. Hiernach beträgt der Anforderungswert für den Reibungskoeffizienten 0,32 bei ebenem Vorwärtsgleiten und 0,28 bei Vorwärtsgleiten auf der Ferse. Beide Werte müssen bei der Normprüfung erfüllt werden!

Zur Qualitätssicherung der Ergebnisse des maschinellen Verfahrens sowie zur besseren Bewertung unter praxisnäheren Bedingungen wurden die Badepantinen mittels Begehung auf der schiefen Ebene zusätzlich getestet. Das Begehungsverfahren nach E DIN 51097 wurde für die Prüfung der Rutschhemmung von Bodenbelägen für nassbelastete Barfußbereiche entwickelt. Dabei begehen Prüfpersonen einen Bodenbelag auf einer neigbaren Plattform, der sogenannten schiefen Ebene. Der Bodenbelag wird mit netzmittelhaltigem Leitungswasser benetzt. Der Neigungswinkel wird stufenweise gesteigert, bis die Prüfperson die Grenze des sicheren Gehens erreicht hat und ausrutscht. Dieser Neigungswinkel ist ein Maß für die Rutschhemmung. Je höher dieser Neigungswinkel ist, desto höher ist das Rutschhemmungspotenzial eines Bodenbelages. Dieses Verfahren lässt sich auch für die Beurteilung der Rutschhemmung von Badepantinen heranziehen, indem auf definierten Bodenbelägen unterschiedliche Badepantinen getestet werden. Je höher der mit einer bestimmten Pantine erreichte Neigungswinkel ist, desto höher ist das Rutschhemmungspotenzial dieser Pantine.

Als Testfliesen für die Begehungsversuche dienten die Kalibrierbeläge nach E DIN 51097. Vor der Begehung wurden die Füße und die Badepantinen 10 Minuten mit der wässrigen Lösung benetzt. Um einen Vergleich herstellen zu können, wurden die Böden vor und nach der Prüfung der Badepantinen auch barfuß begangen.

Der Vergleich mit den Ergebnissen von Barfußprüfungen ermöglicht zudem eine Aussage, inwieweit das Tragen von Badepantinen die Rutschhemmung steigert und somit das Risiko für einen Rutschunfall mindern kann.

Schlussbetrachtung

Rutschhemmungsversuche auf dem Boden-Schuh-Tester und Begehungsversuche auf der schiefen Ebene lassen erkennen, dass das Tragen von Badepantinen die Rutschhemmung im Vergleich zum Barfußgehen signifikant verbessern kann. Die Ergebnisse zeigen ferner, dass Badepantinen mit Gummisohle im Allgemeinen eine deutlichere Erhöhung der Rutschhemmung zur Folge haben als solche mit PU- oder EVA-Sohle.

In der Gesamtbetrachtung ergibt sich, dass Badepantinen einen wirkungsvollen Beitrag zur Minderung von Rutschunfällen leisten.

Vor dem Hintergrund, dass die Badepantine möglichst fest am Fuß sitzen soll, sieht das Sachgebiet bei den individuell an den Fuß einstellbaren Pantinen einen entsprechenden zusätzlichen positiven Aspekt.

Über diese Thematik fand auch eine Veröffentlichung in der Fachzeitschrift "sicher ist sicher" im Oktober 2016 statt [7].

In den anhängenden Tabellen finden Sie die Positivliste der getesteten Badepantinen.

Literatur

- [1] Wetzel, C., U. Windhövel, D. Mewes, T. Götte: Rutschgefahren erkennen und vermeiden Teil 1: Grundlagen, Messverfahren und Anforderungen. Technische Sicherheit 3 (2013) 4, S. 49/54
- [2] Mantlik, T., E. H. Nolting, D. Mewes, O. Ceylan: Prüfung der Rutschhemmung von Bodenbelägen für nassbelastete Barfußbereiche. Technische Sicherheit 5 (2015) 10, S. 36/39
- [3] DIN 23323: Badepantinen für den Bergbau. Beuth Verlag, Berlin (2007)
- [4] DIN EN ISO 20347: Persönliche Schutzausrüstung Berufsschuhe. Beuth Verlag, Berlin (2012)
- [5] DIN EN ISO 13287: Persönliche Schutzausrüstung Schuhe Prüfverfahren zur Bestimmung der Rutschhemmung. Beuth Verlag, Berlin (2013)
- [6] E DIN 51097: Prüfung von Bodenbelägen; Bestimmung der rutschhemmenden Eigenschaft- Nassbelastete Barfußbereiche; Begehungsverfahren; schiefe Ebene. Beuth Verlag, Berlin (2016).
- [7]; Ceylan O., Mewes D., Vogt A.: Rutschhemmung von Badepantinen. "sicher ist sicher" 10 (2016)

Ergebnisse mit dem Boden-Schuh-Tester

Die mit dem Boden-Schuh-Tester bestimmten Gleitreibungskoeffizienten sind in der Tabelle 1 unter Berücksichtigung des Korrekturwertes wiedergegeben.

Tabelle 1: Messergebnisse mit dem Boden-Schuh-Tester

	Badepantine	Material	Shore-A Härte	Reibungskoeffizient μ _{BST}			
Nr.				Ebenes Vorwärtsgleiten	Vorwärtsgleiten auf der Ferse		
	Mindestwert			[min. 0,32 µBST]	[min. 0,28 µBST]		
1.	Birkenstock 270 L11 mit EVA Sohle	EVA	54	0,32	0,32		
2.	Birkenstock 270 L11 mit blauer Gummisohle	Gummi	76	0,48	0,40		
3.	Birkenstock 270 L11 mit weißer Gummisohle	Gummi	74	0,50	0,49		
4.	Fashy 7244 Bio Slipper	Gummi	70	0,41	0,44		
5.	Fashy 7227 Yacht Club	Gummi	64	0,46	0,42		
6.	Fashy 7230 Spa	Gummi	58	0,44	0,43		
7.	Fashy 7220 Sportline	Gummi	73	0,45	0,45		
8.	Spirale RAG	Gummi	74	0,43	0,42		
9.	Fashy 7237 Aqua Club	Gummi	60	0,46	0,41		
10.	Adidas Duramo Slide	PU	45	0,39	0,35		
11.	Adidas Adilette	Gummi	52	0,44	0,40		
12.	Jako Jakolette	PU	37	0,32	0,35		
13.	Tec-One	Gummi	60	0,49	0,49		
14.	Fashy 7559	PU	38	0,32	0,36		

Ergebnisse auf der schiefen Ebene

Tabelle 2 fasst die im Begehungsverfahren gewonnenen Ergebnisse zusammen.

Tabelle 2: Ergebnisse im Begehungsverfahren

Nr.	Badepantine	Profil	Material	Shore-A Härte	Mittlerer Akzeptanzwinkel α _{St}		
					Fliese A	Fliese B	Fliese C
	keine, barfuß	-	-	-	11°	18°	23°
1.	Birkenstock 270 L11 mit EVA Sohle	wellenförmige Ausnehmungen	EVA	54	13°	16°	20°
2.	Birkenstock 270 L11 mit blauer Gummisohle	wellenförmige Ausnehmungen	Gummi	76	20°	30°	30°
3.	Birkenstock 270 L11 mit weißer Gummisohle	wellenförmige Ausnehmungen	Gummi	74	22°	29°	28°
4.	Fashy 7244 Bio Slipper	genarbt und gerillt strukturiert	Gummi	70	22°	30°	31°
5.	Fashy 7227 Yacht Club	Schuppenprofil	Gummi	64	23°	31°	32°
6.	Fashy 7230 Spa	Schuppenprofil	Gummi	58	23°	31°	28°
7.	Fashy 7220 Sportline	Schuppenprofil	Gummi	73	23°	29°	31°
8.	Spirale RAG	Wabenprofil	Gummi	74	24°	29°	32°
9.	Fashy 7237 Aqua Club	Schuppenprofil	Gummi	60	23°	29°	27°
10.	Adidas Duramo Slide	genarbt strukturiert	PU	45	12°	20°	22°
11.	Adidas Adilette	Siebstruktur mit Saugnäpfen	Gummi	52	15°	23°	21°
12.	Jako Jakolette	keilförmige Stege	PU	37	14°	20°	24°
13.	Tec-One	genarbt strukturiert	Gummi	60	15°	24°	29°
14.	Fashy 7559	keilförmige Stege	PU	38	14°	19°	24°