

Transformation in der Metallindustrie

Hinweise zum sicheren Einsatz von Wasserstoff

Fachveranstaltung Erfahrungsaustausch betrieblicher Explosionsschutz M. Groß, 24.03.2025

Hinweise zum Urheberrecht

Die nachfolgenden Folien sind urheberrechtlich geschützt. Sie sind ausschließlich für Vorträge der Berufsgenossenschaft Holz und Metall bestimmt.

Bitte

- fertigen Sie keine Screenshots, Fotos oder andere Kopien der in der Veranstaltung gezeigten Inhalte an,

- filmen Sie nicht mit,
- geben Sie im Anschluss gegebenenfalls zur Verfügung gestellte Unterlagen nicht an betriebsfremde Personen weiter.

Agenda

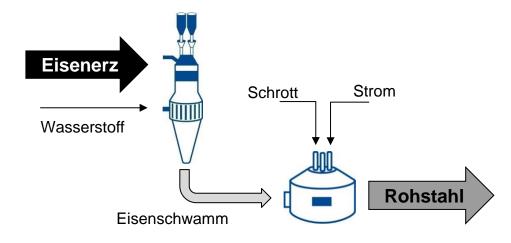
Wasserstoff in der Metallindustrie

Unfallgeschehen und Gefährdungen Wasserstoff

Hinweise zur Prävention von Wasserstoffunfällen

Wasserstoff in der Metallindustrie

Wasserstoffwertschöpfung


© BGHM

Wasserstoff in der Metallurgie

Primärstahlerzeugung (stofflich)

$$FeO + H_2 \rightarrow Fe + H_2O$$

Direktreduktionsofen

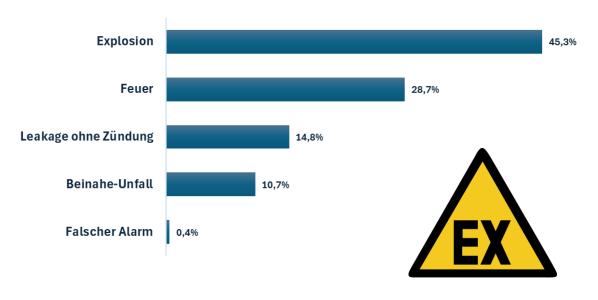
Elektrolichtbogenofen

(Sekundär-) Metallurgie (energetisch)

 Umstellung von Thermoprozessanlagen auf Wasserstoff

- Beispiele aus der BGHM-Welt:
 - Hubbalkenofen (<u>Walzwerke</u>)
 - Brennofen (<u>Aluminium</u>)
 - Glühofenanlage (<u>Stahlbearbeitung</u>)

Unfallgeschehen und Gefährdungen



Wasserstoffvorfälle – Mehr als ein Zeppelin...

insgesamt in Deutschland 47 Vorfälle mit
 11 Toten und 40 Verletzten (Quelle: HIAD)

Eigene Darstellung. Datenquelle: <u>European Hydrogen Incidents and Accidents database</u> <u>HIAD 2.1</u>, <u>European Commission</u>, <u>Joint Research Centre</u>

Eigenschaften von Wasserstoff

Extrem entzündbares Gas

Gas unter Druck, verdichtet, verflüssigt, tiefgekühlt

farb-, geruch- und geschmacklos

- sehr geringe Dichte
- hohes Diffusionsvermögen
- hohe Brenngeschwindigkeit
- unsichtbare Flamme
- geringe Wärmestrahlung
- hohe Flammentemperatur

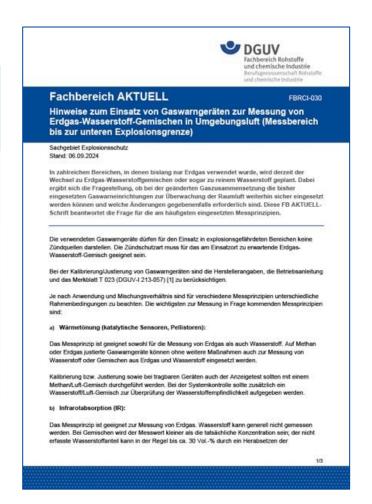
Wasserstoff (H₂) vs. Methan (CH₄)

Was ist gleich...

	CH ₄	H ₂	
gasförmig	Ja		
farblos		Ja	
geruchlos	Ja		
giftig	Nein		
brennbar		Ja	
Temperatur- klasse		T1	

Was ist anders ...

	CH ₄	H ₂
Explosionsbereich in mol%	4,4 - 17	4,0 - 77
Mindestzündenergie in mJ	0,23	0,017
Explosionsgruppe	IIA	IIC
Flammenfarbe	blau	farblos
Molekülgröße in pm	220	75
Joule-Thomson-Koeffizient in K/bar	0,4	-0,03
Infrarotabsorption	ja	nein



Hinweis: Gaswarngeräte für Wasserstoff

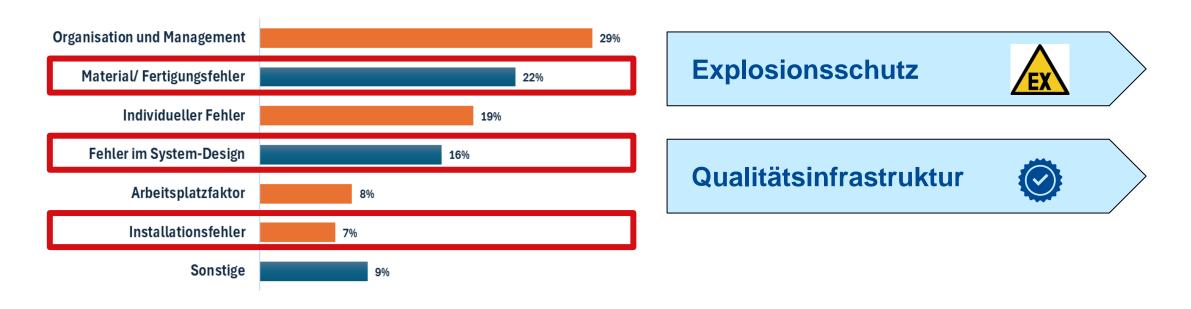
Messprinzip	CH ₄	H ₂	Mix (CH ₄ + H ₂)
Wärmetönung (katalytische Sensoren, Pellistoren)	X	X	X
Infrarotabsorption (IR)	X	-	Max. 30 vol.% H ₂
Elektrochemie (elektrochemischer Sensor)	-	X	Max. 30 vol% CH₄
Gassensitive Halbleiter	X	X	X

Mehr Infos:

- Fachbereich Aktuell FBRCI-030
- Explosionsschutzportal der BG RCI: Liste funktionsgeprüfter Gaswarngeräte

Präventionsleitlinien im Umgang mit Wasserstoff

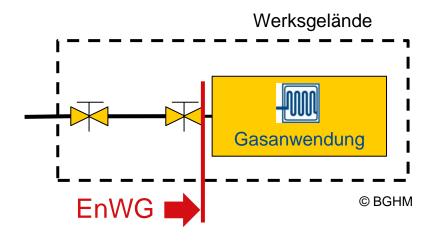
Betrieblicher Explosionsschutz (Allgemein)


 GefStoffV § 6 (9) "Gefährdungen durch gefährliche explosionsfähige Gemische sind besonders auszuweisen" (Explosionsschutzdokument)

TRGS 720	Gefährliche explosionsfähige Atmosphäre (G. e. A.) - Allgemein	
TRGS 721	G. e. A. Beurteilung der Explosionsgefahr	
TRGS 722	Vermeiden von g. e. A. Zündquellenvermeidung Konstruktiver Explosionsschutz Prozessleittechnik Statische Elektrizität Instandhaltung	ign'
TRGS 723	Zündquellenvermeidung	IO.
TRGS 724	Konstruktiver Explosionsschutz	
TRGS 725	Prozessleittechnik	
TRGS 727	Statische Elektrizität	
TRBS 1112 Teil 1	Instandhaltung	
DGUV Info 213-106	Explosionsschutzdokument & Organisatorische Maßnahmen	
DGUV Regel 113-001 Anlage 4	Beispielsammlung zur Zoneneinteilung	

Ursachen und Prävention von Wasserstoffunfällen

<u>Ursachenzuordnung der H₂-Zwischenfälle:</u>


Eigene Darstellung. Datenquelle: European Hydrogen Incidents and Accidents database HIAD 2.1, European Commission, Joint Research Centre

Gasanlagen und das Energiewirtschaftsgesetz

EnWG §49 Anforderungen an Energieanlagen

- (1)Energieanlagen sind so zu errichten und zu betreiben, dass die technische Sicherheit gewährleistet ist. Dabei sind vorbehaltlich sonstiger Rechtsvorschriften die allgemein anerkannten Regeln der Technik zu beachten.
- (2)Die Einhaltung der allgemein anerkannten Regeln der Technik wird **vermutet**, wenn bei Anlagen zur Erzeugung, Fortleitung und Abgabe von ... 2. **Gas und Wasserstoff** die technischen Regeln des Deutschen Vereins des Gasund Wasserfaches e.V. eingehalten worden sind.

Hinweis:

 EnWG § 113c: Anzeigepflicht für die Umstellung mit gutachterlicher Äußerung eines Sachverständigen – für alle Leitungen unabhängig vom Auslegungsdruck

Mehr Informationen zum DVGW-Regelwerk: DVGW e.V.: Wasserstoff und Energiewende /

Anforderungen an industrielle Wasserstoffanwendungen

• Allgemeine Anforderungen für gewerbliche und industrielle Gasanwendungen

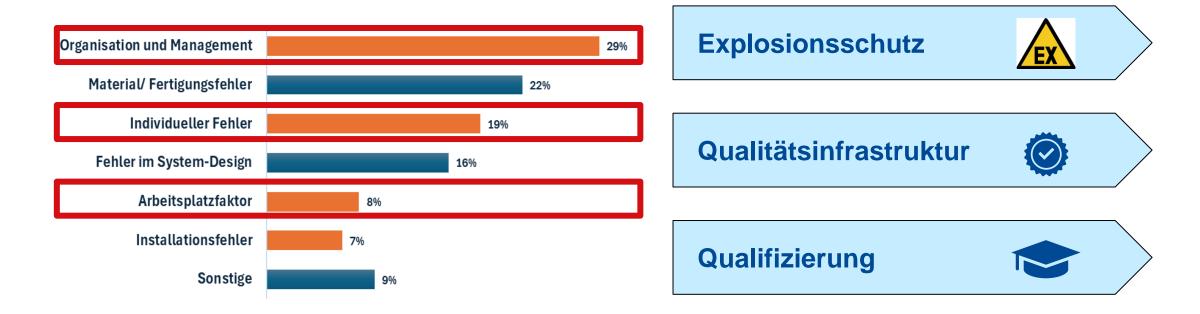
Eignung für Gasbeschaffenheit

Konformitätsnachweis

Anzeige beim Netzbetreiber

Thermoprozessanlagen

EG-Maschinenrichtlinie 2006/42/EG Risikobeurteilung nach DIN EN ISO 12100 Sicherheitsanforderungen für Thermoprozessanlagen DIN EN 746


Hinweise:

- Es empfiehlt sich, den Bezug auf Richtlinien- bzw. Normenkonformität, u.a. DIN EN 746-1 und -2, als Vertragsbestandteil zwischen Betreiber und Ersteller mit aufzunehmen.
- Aus Gründen der Arbeitssicherheit wird eine Abstimmung mit der zuständigen Berufsgenossenschaft empfohlen.

Ursachen und Prävention von Wasserstoffunfällen

<u>Ursachenzuordnung der H₂-Zwischenfälle:</u>

Eigene Darstellung. Datenquelle: European Hydrogen Incidents and Accidents database HIAD 2.1, European Commission, Joint Research Centre

NEU: Präsenzseminar "Erfahrungsaustausch Wasserstoff"

- Umfang: 3-Tagesseminar
- Inhalt:
 - Grundlagen zu Wasserstoff
 - Gefährdungen im Umgang mit Wasserstoff
 - Schutzmaßnahmen
 - Erfahrungsaustausch
- Jetzt anmelden: Wasserstoffseminar BGHM

Zusammenfassung

- Wasserstoff wird aufgrund seiner stofflichen und energetischen Eigenschaften ein wesentlicher Baustein bei der Transformation der Metallindustrie.
- Explosionsschutz, Mitarbeiterqualifizierung und eine wasserstofffähige Qualitätsinfrastruktur sind zentrale Aspekte bei der Prävention von Wasserstoffunfällen.
- Die BGHM unterstützt Ihre Mitgliedsbetriebe aktiv bei der Transformation.

Noch Fragen?

Martin Groß

Fachreferent für Wasserstoff in der Stahlindustrie

Telefon: +49 6131 802-14369

E-Mail: <u>martin.gross@bghm.de</u>

Berufsgenossenschaft Holz und Metall

Isaac-Fulda-Allee 18

55124 Mainz

Web: www.bghm.de